
 1

Real-time Computer Perception of Human Nonverbal Behavior

Thomas Weng
Yale University
April 30, 2015

Advisor: Brian Scassellati
Graduate Advisor: Henny Admoni

Abstract

Humans intuitively perform nonverbal
behaviors in social interactions, using
movements and gestures to both add
emphasis and convey additional
information that may not be expressed in
speech alone. Robots that are able to
recognize and mimic these behaviors can
be more effective agents in social settings.
Reliable nonverbal behavior recognition,
however, is a difficult task, as many
components of the problem are largely not
mathematically well defined. Some of the
technical challenges include tracking
humans in a scene, geometrically inferring
the projection of a point gesture or head
pose, and accounting for ambiguous
human movements.

My project makes use of recent
breakthroughs in hardware and software
technology to build a perception system
capable of detecting human nonverbal
behavior in real-time. Designed for robots
engaging in object-based collaborative
tasks, the system detects behaviors such as
pointing, head orientation, and vocal input,
determining the most likely target object
for a given behavior. The Microsoft Kinect
v2 acts as the primary source of input to
the system, which interfaces with robots
through Robot Operating System, the

standard communication protocol for robot
platforms. This system provides
researchers at the Yale Social Robotics
Lab and elsewhere the ability to
incorporate real-time nonverbal behavior
detection into experiments on human-
robot interaction. Our evaluations of the
system demonstrate that it recognizes
human nonverbal gestures and their
intended target objects with a high level of
accuracy in real-time. The evaluations also
demonstrate that the system’s performance
is most constrained by the number of
objects of interest it must recognize.

Introduction
Recent breakthroughs in hardware and
software technology have enabled the
development of powerful perception systems
for robotics research. The Microsoft Kinect,
first released for development in 2012,
provided researchers with an inexpensive
sensor bar that outperformed existing
sensing solutions. With body tracking, depth
sensing, and other features coming built in
with the device, the Kinect solved several
hard problems for the research community
and lowered the barrier of entry for
performing experiments requiring human
sensing (Han, 2013). The second version of
the Kinect, released for development less
than a year ago, improved upon the original

 2

by both providing more precise data streams
and adding additional features such as face
tracking.i Another recent innovation
accelerating the pace of robotics research is
the development of Robot Operating System
(ROS), a flexible set of software libraries
and tools for programming robots. ROS
development started in 2007 and has since
become the standard tool for programming
robot platforms.

We would like to take advantage of the
capabilities of both the Kinect and ROS for
experiments on human-robot interaction.
The sensing technology provided by the
Kinect allows us to easily track humans and
recognize their movements and gestures, and
ROS provides the framework through which
we can program robots to recognize and
respond to these cues. However,
compatibility issues prevent these two
technologies from pairing easily: ROS is
only compatible with Unix systems, whereas
the Kinect and its Software Development
Kit are designed for Windows only. While
there have been efforts to reverse-engineer
the drivers of the original Kinect for Linux,
this method loses the SDK and all built-in
software such as body tracking, significantly
reducing the feature set of the device.
Furthermore, no such driver solution exists
for the Kinect v2. As a result, there has been
no way to integrate the Kinect v2 with ROS.

This paper describes a perception system
that combines the Kinect and ROS
technologies and demonstrates the detection
of human nonverbal behaviors in real-time.
The system takes data from the Kinect
sensor running on Windows and sends it

over a wireless network to a ROS instance
on a Linux machine, which controls robot
motions and behaviors. This implementation
preserves the software features that reverse-
engineering the proprietary drivers does not,
and is also the first such project we know of
that successfully bridges the two
technologies. Originally a collaborative
project between Yale and MIT researchers,
the system described in this paper branches
from the original and focuses on the domain
of spatial collaborative tasks and recognition
of human nonverbal behavior. The resulting
system can detect objects in a scene, track
human nonverbal behavior, and determine
the target objects of the behaviors.

The perception system described here opens
new possibilities for incorporating real-time
behavior detection in human-robot
interaction experiments. While we focus in
this paper on detecting nonverbal behaviors
relevant to object-based collaboration tasks,
the sensing capabilities of the Kinect can
certainly be leveraged in other areas of HRI
research, such as robot tutoring systems.
This system can be taken as a proof-of-
concept to be modified and adjusted as
required for future experiments.

Design and Implementation
Requirements
The system must be able to: (1) locate
objects of interest in 3D coordinate space,
(2) detect humans to track key cues such as
pointing, head orientation, and simple vocal
input, and (3) rank objects by the likelihood
that the object is the target of a particular
gesture. We use head orientation as a proxy
for eye gaze, which the Kinect is unable
track. These three tasks must be performed

 3

in real-time, meaning that processing must
keep pace with the input of 30 fps, with
minimal dropping of frames.

Input
The Kinect provides sensing data on
independent streams at 30 frames per
second. The system primarily uses the
Depth, Color, Body, and Face streams. The
Depth and Color streams simply provide
image data arriving on the IR and color
cameras, whereas the Body and Face
streams are a little more complex; these
streams provide the results of preprocessing
through Microsoft’s proprietary machine
learning algorithms, which include both
coordinates (i.e. positions of body joints and
face points) and features (i.e. whether an
individual is engaged with the device). See
Fig. 1 for visualizations of the Body and
Face streams.

Figure 1. Visualizations of data from the Body

and Face streams.

System Architecture
See Fig. 2 for a diagram of high-level
architecture of the system.

Figure 2. Overview of system architecture.

The Kinect provides sensing data to the
Windows machine over USB. A C# program
runs on the Windows machine to receive
incoming data and process it further. Then,
the C# program serializes processed data
into JSON and sends messages to the Linux
machine over a web socket connection.ii

When messages arrive on the Linux
machine, they are received and published by

 4

ROS onto a rostopic, or a named
communication bus over which different
ROS nodes can publish and read messages,
named /windows_rosbridge. A ROS node
parses messages on /windows_rosbridge
before re-publishing the result onto different
rostopics for each data type, e.g.
/face_info and /skeleton_info. From
there, other nodes can subscribe to these
rostopics and use the data to perform further
calculations and direct robots.iii See the
technical documentation for further details.

Object Detection
The system uses color-based object
detection to locate objects of interest in the
Kinect’s color stream. The Windows
machine performs this step of processing
using the color subtraction methods
provided by the OpenCV image-processing
library.iv Users must provide a color range in
RGB for each object they would like to
track; to aid users with this step, we
developed the RGB Thresholder utility
which is included in the codebase. To locate
an object, the program subtracts all colors
outside of the specified range from a color
frame and finds the center of the remaining
pixels. To obtain the coordinates of the
object in 3D space, the program can then
map this center pixel from the color frame to
its corresponding pixel in the depth frame.
This coordinate pair can then be sent to ROS
as the position of the object.

It is important to note that the detection
method described here requires a full color
frame subtraction for each object, a step that
is computationally expensive as the number
of objects increases. The processing time
required for this step exceeds the Kinect’s

frame rate when there is more than one
object, requiring us to skip frames and
update the object positions at a lower rate
than 30 fps; see the evaluations section for
more details. Optimization techniques exist
that may mitigate this problem and are
discussed in later sections as well.

Detecting Nonverbal Behaviors
Pointing
Human pointing gestures are often
approximations of the true position of the
target objects (Butterworth, 2000), so our
perception system must be tolerant of these
approximations and infer the most likely
target object of a given pointing gesture. We
can quantify referential ambiguity by way of
two metrics: (1) the angle between the
vector 𝑣! of a point gesture and the vector
𝑣! of the hand to an object, and (2) the
Euclidean distance of the vector from hand
to object. The angle describes how
inaccurate a point is in referring to an object,
and the distance describes how far the object
is from the point gesture. The vectors and
points described here are all three-
dimensional; see Fig. 3 for a simplified
diagram.

Figure 3. Vectors for computing point gestures

and the angle 𝜃 between them.

We calculate the 𝑣! by component-wise
subtraction of the head coordinate from the

 5

hand tip coordinate. Both coordinates are 3D
points provided by Kinect body tracking
data. To calculate 𝑣!, we also do
component-wise subtraction, using the hand
tip point and the position coordinate of an
object.

Now, to compute the metrics, note that the
distance metric is simply the magnitude of
𝑣!. Computing the angle 𝜃 between 𝑣! and
𝑣! the dot product:

𝑣! ∙ 𝑣! = 𝑥!𝑥! + 𝑦!𝑦! + 𝑧!𝑧!
= 𝑣! 𝑣! cos 𝜃

𝜃 = cos−1
𝑣! ∙ 𝑣!
𝑣! 𝑣!

Therefore, we can compute the angle by
taking the arccosine of the dot product
divided by the magnitudes of the two
vectors.

Head Pose
The Kinect provides data on the yaw, pitch,
and roll angles of the head through the Face
stream. In the Kinect’s coordinate system,
pitch, roll, and yaw are rotations about the x,
y, and z axes, respectively.v The
visualization of rotation angle is provided in
Fig. 4.

Figure 4. Pitch, roll, and yaw for head poses.

We apply trigonometric functions to these
angles to calculate a vector describing head
orientation.

𝑥 = sin(𝑦𝑎𝑤)
𝑦 = sin(𝑝𝑖𝑡𝑐ℎ)
𝑧 = cos(𝑦𝑎𝑤)

𝑣!!"# = [𝑥,𝑦, 𝑧]

We can then get vector 𝑣! of the object to
the head to compute the angle and distance
metrics using the same calculations that we
used for pointing gestures. See Fig. 5.

Figure 5. Vectors for computing head orientation
vs. an object and the angle 𝜃 between them.

To mitigate false positives for both pointing
gestures and head orientation towards
objects, we set thresholds on the maximum
acceptable angle for objects; any object
whose θ falls outside of the accepted range
is not considered a possible target of a

 6

gesture. These thresholds are set on a case-
by-case basis, since they depend in part on
the scale and context of the interaction.

Note that this method of tracking pointing
and head pose relies on knowing beforehand
what the objects of interest are in a scene. In
a more generalized version of this task
where objects are not known in advance,
more sophisticated techniques such as ray-
tracing and point cloud analysis would be
required to identify the targets of these
behaviors.

Vocal Input
While vocal input does not fall under the
category of nonverbal behavior, it is a
common and intuitive paradigm for robot
interaction so we implemented it in our
system. We used the Microsoft.Speech
library to listen for preset keywords using
the Kinect’s microphone array. As with
other sensing tasks, the Windows machine
sends a message over Wifi to Linux upon
keyword recognition. While we did not
execute rigorous tests on the performance
and accuracy of vocal input, we found no
issues from the addition of this feature and
the system worked smoothly. Our
implementation of vocal input indicates that
detection of human nonverbal behavior does
not preclude the incorporation of other
communication paradigms.

Evaluations
Demo Video
We recorded a demo video to be included in
our evaluations. The evaluative portion of
the video is a minute and a half long, and it
presents an integrated test of the system in

which the Nao robot directs a user to point
to and look at different colored blocks on a
table. The goals of the test are as follows:
(1) gauging the system’s speed in detecting
nonverbal behaviors in real-time, and (2)
measuring the system’s accuracy in
identifying the target of a behavior.
Fig. 6 shows the setup of the test.

Figure 6. Setup of video evaluation. The Kinect

and Nao sit on the large table, and the blocks
rest on the smaller one. Note that the brown
platform on the smaller table was removed

before testing.

In the test, the Nao instructs the human to
point to or look at an object, providing a six
second window to perform each task. If the
system detects that the human performed the
correct action, it tells the Nao to continue to
the next task; otherwise, it waits until the
time limit was reached to do so.

The blocks are spaced evenly apart, except
for the red and blue blocks, which were
contiguous. The blocks were color
segmented using the RGB Thresholder
utility in preparation for testing. For the
ranking of target objects, we only used the θ
metric in this evaluation, so the object with
the smallest θ was deemed to be the target of

 7

a gesture. The thresholds of maximum
acceptable θ were set to 0.35 radians and 1.5
radians for pointing and head pose,
respectively.

Of the ten tests performed in the evaluation,
one case was a false positive and one was a
delayed response. Both of these cases
occurred in the tests for head orientation,
which is a more ambiguous movement than
pointing. The false positive was triggered by
the fact that the user was already looking in
the direction of the block the Nao requested.
The perception system consequently
determined that the requested block had the
smallest θ, even though the user was not
actively looking at the block. The delayed
response, on the other hand, was a
misdetection that the system corrected in a
few seconds. Otherwise, the gestures and
their target objects were detected correctly
and instantly.

Note that the video evaluation fails to
demonstrate cases where the user points to
an object not requested by the Nao. Such
cases did not cause a problem in less formal
tests we performed. Let it also be clear that
we take these tests to be basic evaluations,
so any application of the system in more
specific settings requires further testing and
tailoring of the system to the intended use.
However, this simple evaluation does
demonstrate that this perception system is
feasible and is worth researching or
developing further.

Processing Objects Test
In addition to the tests performed in the
demo, we also tested the system for its

tolerance regarding number of objects. As
mentioned previously, the amount of
processing time between frames limits the
number of objects the system can support, as
each object requires an expensive call to the
OpenCV color subtraction method on the
entire 1920x1080 frame. To mitigate this
problem and provide the color subtraction
routines with more processing time, we
perform object detection on every fourth
frame. To evaluate this mitigation method,
we measured the performance of the system
with different numbers of objects: all trials
used the same test video in which eight
distinct colors were present, but in each trial
the program was configured to recognize a
different number of the colors. We used the
“rostopic	
 hz” command to measure the
publishing rate for the trials. See Fig. 7 for
the results.

Figure 7. Graph of objects vs. /objects_info	

publish rate for a system segmenting objects

every four frames.

The graph shows a linear decrease in
publishing rate as the number of objects
increases, so that by eight objects we drop
ten of thirty frames on average. Better
optimizations may be able to address the
issue more effectively. For example, writing
the image processing code in C++ instead of

 8

managed C# code or using more efficient
algorithms that make use of techniques such
as template matching are both promising
possibilities.

Conclusion
In this paper, we have described a
perception system that can recognize the
nonverbal behaviors of pointing and looking
at objects, through the proxy of head
orientation. The system uses the recently
released Kinect v2 for sensing, and ROS for
message processing and robot control.

The evaluations of the system demonstrate
that it is able to detect gestures and their
targets with good accuracy and in real time.
The evaluations also revealed that the
system’s primary performance limitation is
its color-based object detection routine.

Future Work
The perception system described here is a
proof-of-concept system, so there is a fair
amount of extensibility for the project. One
possible extension would be to develop a
version of the system for sensing in tutoring
applications, or other areas of research in
HRI.

The Yale Social Robotics Lab is exploring
the possibility of using the system in
experiments on the computational modeling
of object references. Henny Admoni’s recent
work in submission pertains to this subject.
The current implementation of the system
can only detect individual gestures and
identify their targets—aggregating these
individual behaviors into a higher-level
model is a logical next step.

Acknowledgements
I would like to thank Professor Scassellati
and Henny Admoni for advising me on this
project. Thanks to Sam Spaulding and Alex
Litoiu for their help navigating existing
codebases. Thanks to Rachel Protacio as
well for this document template.

References
[1] Jungong Han; Ling Shao; Dong Xu;

Shotton, J., "Enhanced Computer Vision
With Microsoft Kinect Sensor: A
Review," Cybernetics, IEEE
Transactions on , vol.43, no.5,
pp.1318,1334, Oct. 2013

[2] Butterworth, G. and Itakura, S. (2000),
How the eyes, head and hand serve
definite reference. British Journal of
Developmental Psychology, 18: 25–50.
doi: 10.1348/026151000165553

[3] Admoni, Henny. Modeling
communicative behaviors for object
references in human-robot interaction.
Work in submission.

i For more on the differences between the
original Kinect and the Kinect v2, see
http://blogs.msdn.com/b/kinectforwindows/a
rchive/2014/07/15/the-kinect-for-windows-
v2-sensor-and-free-sdk-preview-are-
here.aspx
ii Latency over the wifi network does present
a small concern for real-time systems, but
under stable, closed conditions, this should
not pose a problem.
iii All ROS nodes in our implementation are
written in Python. For more information on
rostopics, see http://wiki.ros.org/Topics
iv The OpenCV library we used was a port
for C# called OpenCvSharp.
v For more on the Kinect’s coordinate
system and head pose angles, see

 9

https://msdn.microsoft.com/en-
us/library/jj130970.aspx. Also the source of
the image.

