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Abstract 

Humans intuitively perform nonverbal 
behaviors in social interactions, using 
movements and gestures to both add 
emphasis and convey additional 
information that may not be expressed in 
speech alone. Robots that are able to 
recognize and mimic these behaviors can 
be more effective agents in social settings. 
Reliable nonverbal behavior recognition, 
however, is a difficult task, as many 
components of the problem are largely not 
mathematically well defined. Some of the 
technical challenges include tracking 
humans in a scene, geometrically inferring 
the projection of a point gesture or head 
pose, and accounting for ambiguous 
human movements.  
 
My project makes use of recent 
breakthroughs in hardware and software 
technology to build a perception system 
capable of detecting human nonverbal 
behavior in real-time. Designed for robots 
engaging in object-based collaborative 
tasks, the system detects behaviors such as 
pointing, head orientation, and vocal input, 
determining the most likely target object 
for a given behavior. The Microsoft Kinect 
v2 acts as the primary source of input to 
the system, which interfaces with robots 
through Robot Operating System, the 

standard communication protocol for robot 
platforms. This system provides 
researchers at the Yale Social Robotics 
Lab and elsewhere the ability to 
incorporate real-time nonverbal behavior 
detection into experiments on human-
robot interaction. Our evaluations of the 
system demonstrate that it recognizes 
human nonverbal gestures and their 
intended target objects with a high level of 
accuracy in real-time. The evaluations also 
demonstrate that the system’s performance 
is most constrained by the number of 
objects of interest it must recognize.  

 
Introduction     
Recent breakthroughs in hardware and 
software technology have enabled the 
development of powerful perception systems 
for robotics research. The Microsoft Kinect, 
first released for development in 2012, 
provided researchers with an inexpensive 
sensor bar that outperformed existing 
sensing solutions. With body tracking, depth 
sensing, and other features coming built in 
with the device, the Kinect solved several 
hard problems for the research community 
and lowered the barrier of entry for 
performing experiments requiring human 
sensing (Han, 2013). The second version of 
the Kinect, released for development less 
than a year ago, improved upon the original 
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by both providing more precise data streams 
and adding additional features such as face 
tracking.i Another recent innovation 
accelerating the pace of robotics research is 
the development of Robot Operating System 
(ROS), a flexible set of software libraries 
and tools for programming robots. ROS 
development started in 2007 and has since 
become the standard tool for programming 
robot platforms.  
 
We would like to take advantage of the 
capabilities of both the Kinect and ROS for 
experiments on human-robot interaction. 
The sensing technology provided by the 
Kinect allows us to easily track humans and 
recognize their movements and gestures, and 
ROS provides the framework through which 
we can program robots to recognize and 
respond to these cues. However, 
compatibility issues prevent these two 
technologies from pairing easily: ROS is 
only compatible with Unix systems, whereas 
the Kinect and its Software Development 
Kit are designed for Windows only. While 
there have been efforts to reverse-engineer 
the drivers of the original Kinect for Linux, 
this method loses the SDK and all built-in 
software such as body tracking, significantly 
reducing the feature set of the device. 
Furthermore, no such driver solution exists 
for the Kinect v2. As a result, there has been 
no way to integrate the Kinect v2 with ROS.   
 
This paper describes a perception system 
that combines the Kinect and ROS 
technologies and demonstrates the detection 
of human nonverbal behaviors in real-time. 
The system takes data from the Kinect 
sensor running on Windows and sends it 

over a wireless network to a ROS instance 
on a Linux machine, which controls robot 
motions and behaviors. This implementation 
preserves the software features that reverse-
engineering the proprietary drivers does not, 
and is also the first such project we know of 
that successfully bridges the two 
technologies. Originally a collaborative 
project between Yale and MIT researchers, 
the system described in this paper branches 
from the original and focuses on the domain 
of spatial collaborative tasks and recognition 
of human nonverbal behavior. The resulting 
system can detect objects in a scene, track 
human nonverbal behavior, and determine 
the target objects of the behaviors.  
 
The perception system described here opens 
new possibilities for incorporating real-time 
behavior detection in human-robot 
interaction experiments. While we focus in 
this paper on detecting nonverbal behaviors 
relevant to object-based collaboration tasks, 
the sensing capabilities of the Kinect can 
certainly be leveraged in other areas of HRI 
research, such as robot tutoring systems. 
This system can be taken as a proof-of-
concept to be modified and adjusted as 
required for future experiments.   
 
Design and Implementation 
Requirements 
The system must be able to: (1) locate 
objects of interest in 3D coordinate space, 
(2) detect humans to track key cues such as 
pointing, head orientation, and simple vocal 
input, and (3) rank objects by the likelihood 
that the object is the target of a particular 
gesture. We use head orientation as a proxy 
for eye gaze, which the Kinect is unable 
track. These three tasks must be performed 
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in real-time, meaning that processing must 
keep pace with the input of 30 fps, with 
minimal dropping of frames.  
 
Input  
The Kinect provides sensing data on 
independent streams at 30 frames per 
second. The system primarily uses the 
Depth, Color, Body, and Face streams. The 
Depth and Color streams simply provide 
image data arriving on the IR and color 
cameras, whereas the Body and Face 
streams are a little more complex; these 
streams provide the results of preprocessing 
through Microsoft’s proprietary machine 
learning algorithms, which include both 
coordinates (i.e. positions of body joints and 
face points) and features (i.e. whether an 
individual is engaged with the device). See 
Fig. 1 for visualizations of the Body and 
Face streams.  
 

 

 
Figure 1. Visualizations of data from the Body 

and Face streams.  
 
System Architecture 
See Fig. 2 for a diagram of high-level 
architecture of the system. 

 
Figure 2. Overview of system architecture. 

 
The Kinect provides sensing data to the 
Windows machine over USB. A C# program 
runs on the Windows machine to receive 
incoming data and process it further. Then, 
the C# program serializes processed data 
into JSON and sends messages to the Linux 
machine over a web socket connection.ii  
 
When messages arrive on the Linux 
machine, they are received and published by 
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ROS onto a rostopic, or a named 
communication bus over which different 
ROS nodes can publish and read messages, 
named /windows_rosbridge. A ROS node 
parses messages on /windows_rosbridge 
before re-publishing the result onto different 
rostopics for each data type, e.g. 
/face_info and /skeleton_info. From 
there, other nodes can subscribe to these 
rostopics and use the data to perform further 
calculations and direct robots.iii See the 
technical documentation for further details.  
 
Object Detection 
The system uses color-based object 
detection to locate objects of interest in the 
Kinect’s color stream. The Windows 
machine performs this step of processing 
using the color subtraction methods 
provided by the OpenCV image-processing 
library.iv Users must provide a color range in 
RGB for each object they would like to 
track; to aid users with this step, we 
developed the RGB Thresholder utility 
which is included in the codebase. To locate 
an object, the program subtracts all colors 
outside of the specified range from a color 
frame and finds the center of the remaining 
pixels. To obtain the coordinates of the 
object in 3D space, the program can then 
map this center pixel from the color frame to 
its corresponding pixel in the depth frame. 
This coordinate pair can then be sent to ROS 
as the position of the object.  
 
It is important to note that the detection 
method described here requires a full color 
frame subtraction for each object, a step that 
is computationally expensive as the number 
of objects increases. The processing time 
required for this step exceeds the Kinect’s 

frame rate when there is more than one 
object, requiring us to skip frames and 
update the object positions at a lower rate 
than 30 fps; see the evaluations section for 
more details. Optimization techniques exist 
that may mitigate this problem and are 
discussed in later sections as well.  
 
Detecting Nonverbal Behaviors 
Pointing 
Human pointing gestures are often 
approximations of the true position of the 
target objects (Butterworth, 2000), so our 
perception system must be tolerant of these 
approximations and infer the most likely 
target object of a given pointing gesture. We 
can quantify referential ambiguity by way of 
two metrics: (1) the angle between the 
vector 𝑣! of a point gesture and the vector 
𝑣! of the hand to an object, and (2) the 
Euclidean distance of the vector from hand 
to object. The angle describes how 
inaccurate a point is in referring to an object, 
and the distance describes how far the object 
is from the point gesture. The vectors and 
points described here are all three-
dimensional; see Fig. 3 for a simplified 
diagram. 
 

 
Figure 3. Vectors for computing point gestures 

and the angle 𝜃 between them.  
 
We calculate the 𝑣! by component-wise 
subtraction of the head coordinate from the 
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hand tip coordinate. Both coordinates are 3D 
points provided by Kinect body tracking 
data. To calculate 𝑣!, we also do 
component-wise subtraction, using the hand 
tip point and the position coordinate of an 
object.   
 
Now, to compute the metrics, note that the 
distance metric is simply the magnitude of 
𝑣!. Computing the angle 𝜃 between 𝑣! and 
𝑣! the dot product: 
 

𝑣! ∙ 𝑣! =   𝑥!𝑥! + 𝑦!𝑦! + 𝑧!𝑧!
= 𝑣! 𝑣! cos 𝜃 
 

𝜃 =    cos−1
𝑣! ∙ 𝑣!
𝑣! 𝑣!

 

 
Therefore, we can compute the angle by 
taking the arccosine of the dot product 
divided by the magnitudes of the two 
vectors.  
 
Head Pose 
The Kinect provides data on the yaw, pitch, 
and roll angles of the head through the Face 
stream. In the Kinect’s coordinate system, 
pitch, roll, and yaw are rotations about the x, 
y, and z axes, respectively.v The 
visualization of rotation angle is provided in 
Fig. 4.  
 

 
Figure 4. Pitch, roll, and yaw for head poses. 

 
We apply trigonometric functions to these 
angles to calculate a vector describing head 
orientation. 

𝑥 =    sin(𝑦𝑎𝑤) 
𝑦 =    sin(𝑝𝑖𝑡𝑐ℎ) 
𝑧 =    cos(𝑦𝑎𝑤) 

 
𝑣!!"# = [𝑥,𝑦, 𝑧] 

 
We can then get vector 𝑣!  of the object to 
the head to compute the angle and distance 
metrics using the same calculations that we 
used for pointing gestures. See Fig. 5. 
 

Figure 5. Vectors for computing head orientation 
vs. an object and the angle 𝜃 between them.  

 
To mitigate false positives for both pointing 
gestures and head orientation towards 
objects, we set thresholds on the maximum 
acceptable angle for objects; any object 
whose θ falls outside of the accepted range 
is not considered a possible target of a 
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gesture. These thresholds are set on a case-
by-case basis, since they depend in part on 
the scale and context of the interaction.  
 
Note that this method of tracking pointing 
and head pose relies on knowing beforehand 
what the objects of interest are in a scene. In 
a more generalized version of this task 
where objects are not known in advance, 
more sophisticated techniques such as ray-
tracing and point cloud analysis would be 
required to identify the targets of these 
behaviors. 
 
Vocal Input 
While vocal input does not fall under the 
category of nonverbal behavior, it is a 
common and intuitive paradigm for robot 
interaction so we implemented it in our 
system. We used the Microsoft.Speech 
library to listen for preset keywords using 
the Kinect’s microphone array. As with 
other sensing tasks, the Windows machine 
sends a message over Wifi to Linux upon 
keyword recognition. While we did not 
execute rigorous tests on the performance 
and accuracy of vocal input, we found no 
issues from the addition of this feature and 
the system worked smoothly. Our 
implementation of vocal input indicates that 
detection of human nonverbal behavior does 
not preclude the incorporation of other 
communication paradigms.  
 
Evaluations 
Demo Video 
We recorded a demo video to be included in 
our evaluations. The evaluative portion of 
the video is a minute and a half long, and it 
presents an integrated test of the system in 

which the Nao robot directs a user to point 
to and look at different colored blocks on a 
table. The goals of the test are as follows: 
(1) gauging the system’s speed in detecting 
nonverbal behaviors in real-time, and (2) 
measuring the system’s accuracy in 
identifying the target of a behavior.  
Fig. 6 shows the setup of the test.  
 

  
Figure 6. Setup of video evaluation. The Kinect 

and Nao sit on the large table, and the blocks 
rest on the smaller one. Note that the brown 
platform on the smaller table was removed 

before testing.  
 
In the test, the Nao instructs the human to 
point to or look at an object, providing a six 
second window to perform each task. If the 
system detects that the human performed the 
correct action, it tells the Nao to continue to 
the next task; otherwise, it waits until the 
time limit was reached to do so.  
 
The blocks are spaced evenly apart, except 
for the red and blue blocks, which were 
contiguous. The blocks were color 
segmented using the RGB Thresholder 
utility in preparation for testing. For the 
ranking of target objects, we only used the θ 
metric in this evaluation, so the object with 
the smallest θ was deemed to be the target of 
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a gesture. The thresholds of maximum 
acceptable θ were set to 0.35 radians and 1.5 
radians for pointing and head pose, 
respectively.  
 
Of the ten tests performed in the evaluation, 
one case was a false positive and one was a 
delayed response. Both of these cases 
occurred in the tests for head orientation, 
which is a more ambiguous movement than 
pointing. The false positive was triggered by 
the fact that the user was already looking in 
the direction of the block the Nao requested. 
The perception system consequently 
determined that the requested block had the 
smallest θ, even though the user was not 
actively looking at the block. The delayed 
response, on the other hand, was a 
misdetection that the system corrected in a 
few seconds. Otherwise, the gestures and 
their target objects were detected correctly 
and instantly.  
 
Note that the video evaluation fails to 
demonstrate cases where the user points to 
an object not requested by the Nao. Such 
cases did not cause a problem in less formal 
tests we performed. Let it also be clear that 
we take these tests to be basic evaluations, 
so any application of the system in more 
specific settings requires further testing and 
tailoring of the system to the intended use. 
However, this simple evaluation does 
demonstrate that this perception system is 
feasible and is worth researching or 
developing further.  
 
Processing Objects Test 
In addition to the tests performed in the 
demo, we also tested the system for its 

tolerance regarding number of objects. As 
mentioned previously, the amount of 
processing time between frames limits the 
number of objects the system can support, as 
each object requires an expensive call to the 
OpenCV color subtraction method on the 
entire 1920x1080 frame. To mitigate this 
problem and provide the color subtraction 
routines with more processing time, we 
perform object detection on every fourth 
frame. To evaluate this mitigation method, 
we measured the performance of the system 
with different numbers of objects: all trials 
used the same test video in which eight 
distinct colors were present, but in each trial 
the program was configured to recognize a 
different number of the colors. We used the 
“rostopic	   hz” command to measure the 
publishing rate for the trials. See Fig. 7 for 
the results.  
 

 
Figure 7. Graph of objects vs. /objects_info	  
publish rate for a system segmenting objects 

every four frames. 
 
The graph shows a linear decrease in 
publishing rate as the number of objects 
increases, so that by eight objects we drop 
ten of thirty frames on average. Better 
optimizations may be able to address the 
issue more effectively. For example, writing 
the image processing code in C++ instead of 
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managed C# code or using more efficient 
algorithms that make use of techniques such 
as template matching are both promising 
possibilities.  
 
Conclusion 
In this paper, we have described a 
perception system that can recognize the 
nonverbal behaviors of pointing and looking 
at objects, through the proxy of head 
orientation. The system uses the recently 
released Kinect v2 for sensing, and ROS for 
message processing and robot control.  
 
The evaluations of the system demonstrate 
that it is able to detect gestures and their 
targets with good accuracy and in real time. 
The evaluations also revealed that the 
system’s primary performance limitation is 
its color-based object detection routine.  
 
Future Work 
The perception system described here is a 
proof-of-concept system, so there is a fair 
amount of extensibility for the project. One 
possible extension would be to develop a 
version of the system for sensing in tutoring 
applications, or other areas of research in 
HRI.  
 
The Yale Social Robotics Lab is exploring 
the possibility of using the system in 
experiments on the computational modeling 
of object references. Henny Admoni’s recent 
work in submission pertains to this subject. 
The current implementation of the system 
can only detect individual gestures and 
identify their targets—aggregating these 
individual behaviors into a higher-level 
model is a logical next step.  
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i For more on the differences between the 
original Kinect and the Kinect v2, see 
http://blogs.msdn.com/b/kinectforwindows/a
rchive/2014/07/15/the-kinect-for-windows-
v2-sensor-and-free-sdk-preview-are-
here.aspx  
ii Latency over the wifi network does present 
a small concern for real-time systems, but 
under stable, closed conditions, this should 
not pose a problem. 
iii All ROS nodes in our implementation are 
written in Python. For more information on 
rostopics, see http://wiki.ros.org/Topics  
iv The OpenCV library we used was a port 
for C# called OpenCvSharp. 
v For more on the Kinect’s coordinate 
system and head pose angles, see 
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https://msdn.microsoft.com/en-
us/library/jj130970.aspx. Also the source of 
the image. 


